Combining Features for BCI

نویسندگان

  • Guido Dornhege
  • Benjamin Blankertz
  • Gabriel Curio
  • Klaus-Robert Müller
چکیده

Recently, interest is growing to develop an effective communication interface connecting the human brain to a computer, the ’Brain-Computer Interface’ (BCI). One motivation of BCI research is to provide a new communication channel substituting normal motor output in patients with severe neuromuscular disabilities. In the last decade, various neurophysiological cortical processes, such as slow potential shifts, movement related potentials (MRPs) or event-related desynchronization (ERD) of spontaneous EEG rhythms, were shown to be suitable for BCI, and, consequently, different independent approaches of extracting BCI-relevant EEG-features for single-trial analysis are under investigation. Here, we present and systematically compare several concepts for combining such EEG-features to improve the single-trial classification. Feature combinations are evaluated on movement imagination experiments with 3 subjects where EEG-features are based on either MRPs or ERD, or both. Those combination methods that incorporate the assumption that the single EEG-features are physiologically mutually independent outperform the plain method of ’adding’ evidence where the single-feature vectors are simply concatenated. These results strengthen the hypothesis that MRP and ERD reflect at least partially independent aspects of cortical processes and open a new perspective to boost BCI effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300

The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together b...

متن کامل

Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP

Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far f...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Exploring two novel features for EEG-based brain-computer interfaces: Multifractal cumulants and predictive complexity

In this paper, we introduce two new features for the design of electroencephalography (EEG) based Brain-Computer Interfaces (BCI): one feature based on multifractal cumulants, and one feature based on the predictive complexity of the EEG time series. The multifractal cumulants feature measures the signal regularity, while the predictive complexity measures the difficulty to predict the future o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002