Combining Features for BCI
نویسندگان
چکیده
Recently, interest is growing to develop an effective communication interface connecting the human brain to a computer, the ’Brain-Computer Interface’ (BCI). One motivation of BCI research is to provide a new communication channel substituting normal motor output in patients with severe neuromuscular disabilities. In the last decade, various neurophysiological cortical processes, such as slow potential shifts, movement related potentials (MRPs) or event-related desynchronization (ERD) of spontaneous EEG rhythms, were shown to be suitable for BCI, and, consequently, different independent approaches of extracting BCI-relevant EEG-features for single-trial analysis are under investigation. Here, we present and systematically compare several concepts for combining such EEG-features to improve the single-trial classification. Feature combinations are evaluated on movement imagination experiments with 3 subjects where EEG-features are based on either MRPs or ERD, or both. Those combination methods that incorporate the assumption that the single EEG-features are physiologically mutually independent outperform the plain method of ’adding’ evidence where the single-feature vectors are simply concatenated. These results strengthen the hypothesis that MRP and ERD reflect at least partially independent aspects of cortical processes and open a new perspective to boost BCI effectiveness.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملAn Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300
The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together b...
متن کاملDevelopment of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP
Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far f...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملExploring two novel features for EEG-based brain-computer interfaces: Multifractal cumulants and predictive complexity
In this paper, we introduce two new features for the design of electroencephalography (EEG) based Brain-Computer Interfaces (BCI): one feature based on multifractal cumulants, and one feature based on the predictive complexity of the EEG time series. The multifractal cumulants feature measures the signal regularity, while the predictive complexity measures the difficulty to predict the future o...
متن کامل